Member of the Week : SmartDesiKid - Page 167

Created

Last reply

Replies

2.5k

Views

81.3k

Users

39

Frequent Posters

SmarterDesiKid thumbnail
19th Anniversary Thumbnail Sparkler Thumbnail + 2
Posted: 19 years ago
nope. here: I give u some homeowork 😆
Alice i was driving on a highway recently for one hour at a constant and very special speed.
Bob what was so special about it?
Alice the number of cars i passed was the same as the number of cars that passed me!
Bob your speed must have been the mean of the speeds of the cars on the road.
Alice or was it the median?
Bob these two are often confused. maybe it's neither? we'll have to think about this.

Was Alice's speed the mean, median, or neither?

Note: Assume that any car on the road drives at a constant nonzero speed of s miles per hour, where s is a positive inte- ger. And suppose that for each s, the cars driving at speed s are spaced uniformly, with d(s) cars per mile, d(s) being an integer. And because each mile looks the same as any other by the uniformity hypothesis, we can take mean and median to refer to the set of cars in a fixed one-mile segment, the half-open interval [M, M+1), at some instant
SmarterDesiKid thumbnail
19th Anniversary Thumbnail Sparkler Thumbnail + 2
Posted: 19 years ago

sory wrong question

The complex Principal Square Root sqrt(z) of a complex number z is the square root (one of two if z != 0) whose Real Part is nonnegative. If z<0 (so Re(sqrt(z)) = 0) then assign the same sign to Im(sqrt(z)) as to Im(z). (Yes, zero has a sign.)

Now let:

f(z) := sqrt(1 - z^2), g(z) := sqrt(1-z) * sqrt(1+z)
F(z) := sqrt(z^2 - 1), G(z) := sqrt(z-1) * sqrt(z+1)

Over what region in the complex plane does f(z) = g(z)?
Over what region in the complex plane does F(z) = G(z)?

that

galois311 thumbnail
19th Anniversary Thumbnail Voyager Thumbnail
Posted: 19 years ago
Dude, I love math but I am not doing your hw for you. 😆
SmarterDesiKid thumbnail
19th Anniversary Thumbnail Sparkler Thumbnail + 2
Posted: 19 years ago
Homework - I don't even get that stuff. I get some. Plus it's Summer vaca here - so NO homework - exept or summer reading 😭
galois311 thumbnail
19th Anniversary Thumbnail Voyager Thumbnail
Posted: 19 years ago
In fact here lemme give you a question that requires some research:

Go to google and find me 5 webcomics. I want some part of the plot line, a list of characters and whatnot, and I will read them so they had better be good.

Oh and tell me who your 5 fav cartoon characters are.

And five of your fav superheroes.

And five of your fav scientists.

Thats four questions, I want reasons for the last three.

Think you can do that?
Edited by galois311 - 19 years ago
galois311 thumbnail
19th Anniversary Thumbnail Voyager Thumbnail
Posted: 19 years ago

Originally posted by: SmarterDesiKid

sory wrong question

The complex Principal Square Root sqrt(z) of a complex number z is the square root (one of two if z != 0) whose Real Part is nonnegative. If z<0 (so Re(sqrt(z)) = 0) then assign the same sign to Im(sqrt(z)) as to Im(z). (Yes, zero has a sign.)

Now let:

f(z) := sqrt(1 - z^2), g(z) := sqrt(1-z) * sqrt(1+z)
F(z) := sqrt(z^2 - 1), G(z) := sqrt(z-1) * sqrt(z+1)

Over what region in the complex plane does f(z) = g(z)?
Over what region in the complex plane does F(z) = G(z)?

that


Ok this doesn't even make sense to me, how do you do the factorial of a complex number (z!)? And any numbers factorial can never equal zero...
are you sure you mean !=factorial or do you mean something else?
galois311 thumbnail
19th Anniversary Thumbnail Voyager Thumbnail
Posted: 19 years ago
I mean without that the solution is everywhere because
g(z)=sqrt(1-z)sqrt(1+z)=sqrt(1-z^2)=f(z)
and the same for the F(z) and G(z).
SmarterDesiKid thumbnail
19th Anniversary Thumbnail Sparkler Thumbnail + 2
Posted: 19 years ago

Originally posted by: galois311

In fact here lemme give you a question that requires some research:

Go to google and find me 5 webcomics. I want some part of the plot line, a list of characters and whatnot, and I will read them so they had better be good.

A thoroughly unpredictable metaphysical metafiction. Its iridescent art and logically transgressive writing is so off-handed, yet so meticulous, that it seems like nothing more than a grand prank. Yet its nervous guffaw in the face of society is just too damned brave not to win a few medals.

Read our review.

Read this comic.


Acid Keg
Steve Hogan
Free

Austin Powers, step aside. Steve Hogan is the man who has such a complete grasp on everything that was cool from the 60s and 70s. And he has been able to seamlessly apply it to a modern sensibility. It's beautifully drawn, and humorously written. This comic has got it all.

Read our review.

Read this comic.


Athena Voltaire
Paul Daly, Steve Bryant and Chad Fidler
Subscription (Modern Tales)

This saga reads like Indiana Jones meets Christopher Lee-- which may or may not be your sprout of garlic. But it's staged with earnest enthusiasm by true fans of the genre; and the artwork is richly textured, vibrantly colored, and dripping with atmosphere.

Read this comic.


Ballad
Dead Mouse
Free

Dead Mouse seemingly came out of nowhere this year to present to us one of the few horror webcomics out there. This comic is absorbing, fabulously drawn, very disturbing, and has earned it's notoriety. Ballad has shown us that setting out to do something original is actually a good thing. Pay close attention, all you webcomic up and comers.

Read our review

Read this comic.


Bite Me!
Dylan Meconis
Subscription (Girlamatic)

Dylan Meconis' French Revolution vampire comedy ended this year, completing one of the funniest and most enjoyable graphic novels available on the Web. It's been a pleasure to follow Meconis' work as she's developed as a writer and artist over the course of "Bite Me!", and we're waiting with bated breath to see what she produces in the future.

Read our review.

Read our interview with Dylan Meconis.

Read this comic.

Oh and tell me who your 5 fav cartoon characters are.

Donald Duck - funny way of speaking - stupid but funny things
Bugs Bunny - sum are hilarious (even now)
Porky pig - way of speaking
Tazmainan - IDK why
ELMER - retardedly funny


And five of your fav superheroes.

SuperMan - he's super😆
cyclps (x men) he has this laser thing from his eye's
those are the only two.


And five of your fav scientists.

Newton - genius
Copernicus - genius
Galileo - editing the Telescope
Ptolemy - idk why
myself - cuz I am a scientist =D


Thats four questions, I want reasons for the last three.

Think you can do that?

Edited by SmarterDesiKid - 19 years ago
galois311 thumbnail
19th Anniversary Thumbnail Voyager Thumbnail
Posted: 19 years ago

First of all, did you actually look through these webcomics? Because the last one I would have to pay for...which totally ruins the idea of a webcomic..see they are supposed to be free.

If you actually like them then you have an interesting choice. The first two, I liked, weird but good. I also liked the 4th one, the ballad....very nice drawings and interesting plotline.

And how can you not like Wolverine man? How? And Batman...I mean he is cool only because he doesn't have super powers! I weep boy, I weep.
SmarterDesiKid thumbnail
19th Anniversary Thumbnail Sparkler Thumbnail + 2
Posted: 19 years ago
BAtman has a a car that I like. and hes has a mask - he is scare. Superman doesn't have any mask 🤢 😆

Related Topics

Top

Stay Connected with IndiaForums!

Be the first to know about the latest news, updates, and exclusive content.

Add to Home Screen!

Install this web app on your iPhone for the best experience. It's easy, just tap and then "Add to Home Screen".